

Manual de Victron VM-3P75CT Energy Meter

Índice

1. Instruções de segurança	1
2. Introdução	2
2.1. Características 2.2. O que está na caixa?	
3. Instalação	4
3.1. Instalação e cablagem dos transformadores de corrente de núcleo dividido 3.2. Cablagem de potência e proteção contra sobreintensidades 3.3. Exemplos de ligações elétricas por aplicação 3.4. Ligações de Ethernet e VE.Can	5 6
4. Configuração e monitorização	8
4.1. Códigos LED	10
5. Atualizações de firmware	11
6. Reinício e reposição das predefinições de fábrica	12
7. Resolução de problemas	13
7.1. O LED alterna entre verde e vermelho intermitente (modo de gestor de arranque)	13
7.3.1. O valor atual parece anormalmente elevado para a potência indicada	13
8. Informação técnica	15
8.1. Especificações técnicas 8.2. Dimensão do invólucro	

1. Instruções de segurança

Geral

Leia as instruções de segurança seguintes antes de instalar e utilizar o medidor de energia VM-3P75CT Energy Meter, para evitar os riscos de incêndio, choques elétricos, lesões pessoais ou danos no equipamento.

Este produto foi fabricado e testado de acordo com as normas internacionais. O equipamento deve ser utilizado exclusivamente para os fins previstos e de acordo com os parâmetros operacionais especificados.

Instalação

A instalação, a manutenção, a assistência técnica e as definições devem ser realizadas apenas por pessoal qualificado. Para reduzir o risco de choque elétrico, não execute qualquer manutenção para além da especificada nas instruções de funcionamento, exceto se for qualificado para a mesma.

- Nos trabalhos elétricos deve cumprir as normas e os regulamentos nacionais e locais sobre as ligações elétricas e estas instruções de instalação. A ligação à rede elétrica deve ser realizada em conformidade com a regulamentação local para as instalações elétricas.
- Nunca faça a instalação próximo de fontes de ignição, materiais explosivos, combustíveis ou outros focos de incêndio. Nunca utilize a estação em locais onde possam ocorrer explosões de gás ou de outros produtos químicos.
- Desligue a alimentação elétrica antes de instalar ou realizar operações na mesma.
- · Não coloque os dedos nem introduza objetos ou objetos metálicos afiados nos terminais.
- Realize a instalação num ambiente seco.
- · Não aplique demasiada força no equipamento para evitar colisões e deterioração.
- Não é permitido utilizar os grampos de corrente nos fios descarnados.
- Certifique-se de que a ligação à terra é realizada corretamente para evitar danos no equipamento.

Utilização, assistência técnica e manutenção

- Não utilize o dispositivo se apresentar sinais de danos ou não funcionar corretamente.
- · Não utilize o VM-3P75CT se estiver avariado, defeituoso, fendido, danificado ou não funcionar corretamente.
- O VM-3P75CT não contém peças reparáveis.
- · Se um transformador de corrente estiver defeituoso, deve ser substituído por pessoal qualificado.
- Não é necessário realizar uma manutenção regular do VM-3P75CT.
- Evite a humidade, a gordura, a fuligem e o vapor e mantenha o dispositivo limpo.
- · Limpe a parte frontal do VM-3P75CT com um pano seco.

2. Introdução

O medidor de energia Victron VM-3P75CT é um dispositivo normalizado para medir a potência e a energia de aplicações monofásicas, de fase dividida e trifásicas e que calcula os valores de energia de cada fase para a sua transmissão através de VE.Can ou Ethernet com uma taxa elevada.

Dispõe de portas Ethernet e VE.CAN integradas para realizar a ligação a um dispositivo GX e os transformadores de corrente de núcleo dividido permitem uma instalação fácil e rápida sem modificar as ligações elétricas existentes.

O medidor de energia funciona logo após o desembalamento (o firmware pode precisar de ser atualizado; os detalhes estão disponíveis no capítulo Atualizações de firmware [11]) como um medidor de rede elétrica para sistemas com Multiplus e Quattro. A configuração (através da VictronConnect) só é necessária para alterar a função e a configuração do IP manual em vez da predefinida, DHCP.

Os dados são visualizados num dispositivo GX, como o Cerbo GX ou Ekrano GX , bem como na aplicação VictronConnect e no nosso portal VRM.

2.1. Características

- Com capacidade para medir até 80 A_{rms} (raiz do valor quadrático médio) por fase (mas classificado com 75 A)
- · Comunicação Modbus/UDP através de Ethernet
- · Transformadores de corrente de núcleo dividido para uma instalação fácil, sem modificar as ligações elétricas existentes
- · Apoio para a configuração de fase dividida
- · Registo da energia total configurável: vetorial, aritmética ou absoluta
- · Relatórios:
 - · Tensão linha-a-neutro
 - · Tensão linha-a-linha
 - · Fator de potência (segundo a norma IEEE)
 - Sequência de fase (para configuração trifásica)
 - advertência de rotação de fase (para configuração trifásica)
 - · tensões de terra protetoras
 - · correntes de linha e neutras
- · O LED de estado pode ser configurado como um contador de impulso LED para um diagnóstico rápido

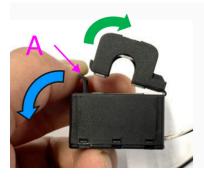
O VM-3P75CT pode ser configurado com quatro funções diferentes num dispositivo GX, como o Cerbo GX ou o Ekrano GX. Dependendo da aplicação, pode ser utilizado:

- · como medidor da rede elétrica, proporcionando uma entrada de controlo para um sistema de armazenagem de energia (ESS).
- · para medir a saída de um inversor PV
- · para medir a saída de um gerador CA
- · como um medidor de CA para um circuito de carga CA específico.
- · para monitorizar um carregador EV
- · para monitorizar uma bomba de calor

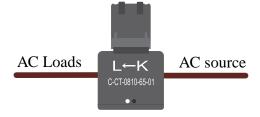
Oferece duas opções de ligação a um dispositivo GX:

- Uma ligação de Ethernet com fios a uma rede local através da porta de Ethernet integrada, para permitir a comunicação com o dispositivo GX.
- 2. Uma ligação VE.Can com fios através da porta VE.Can integrada, que efetua a ligação direta ao dispositivo GX.

2.2. O que está na caixa?



3. Instalação


3.1. Instalação e cablagem dos transformadores de corrente de núcleo dividido

Tenha em conta o seguinte ao instalar transformadores de corrente de núcleo dividido:

- Não é permitido utilizar os grampos de corrente nos fios descarnados.
- Como os transformadores de corrente s\u00e3o bastante delicados, deve respeitar o seguinte procedimento quando proceder \u00e0 sua instala\u00e7\u00e3o:

- Primeiro, abra a Secção A. Tenha cuidado para não deformar a cabeça.
 A parte da cabeça do produto irá levantar-se naturalmente.
- 2. Prenda a parte da cabeça com a mão.
- 3. Certifique-se de que os transformadores de corrente estão ligados ao fio de fase e ao terminal de entrada corretos. Os transformadores são marcados com um indicador que mostra a porta de entrada à qual pertencem. Os dispositivos são calibrados na fábrica e a precisão irá diminuir se os transformadores de corrente não forem compatíveis com a entrada correta.
- 4. Existe uma seta impressa no TC com o rótulo L ← K. Certifique-se de que a seta aponta para as cargas.

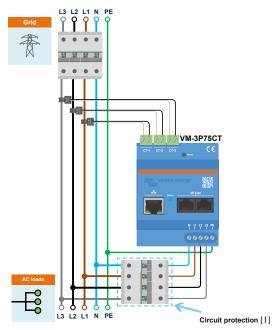
5. Certifique-se de que os fios corretos estão ligados aos terminais de tensão. O dispositivo pode ficar danificado se os fios de duas fases forem ligados à entrada neutra e a L1.

Extensão dos fios dos transformadores de corrente de núcleo dividido

Os fios dos transformadores de corrente podem ser prolongados, se necessário, mas note-se que isso aumentará ligeiramente o ruído de medição.

Quanto mais compridos forem os cabos, maior será o patamar de ruído. No entanto, se o comprimento for duplicado, o erro adicional continua a ser baixo (quase 0 A)

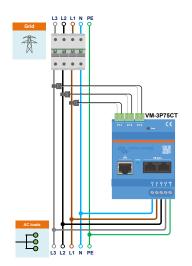
Para minimizar o ruído induzido, recomenda-se que os cabos sejam torcidos como os cabos fornecidos com o dispositivo.

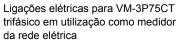


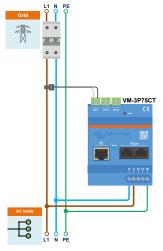
Se um transformador de núcleo dividido ficar danificado, pode encomendar um sobresselente ao seu distribuidor Victron ou através desta ligação.

3.2. Cablagem de potência e proteção contra sobreintensidades

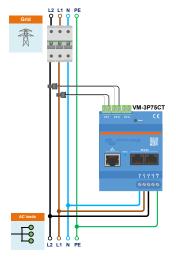
O VM-3P75CT integra um fusível não substituível que protege os circuitos internos. Se for utilizado o mesmo calibre de cabo para ligar o VM-3P75CT ao resto do circuito a jusante do disjuntor, não será necessário nenhum disjuntor adicional. A maioria das instalações europeias utiliza uma cablagem de 2,5 mm² protegida por um disjuntor de 16 A, o que também é adequado para o VM-3P75CT.

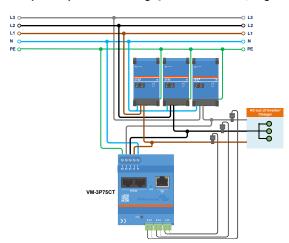

Se for utilizado um calibre diferente, deve ser instalado um disjuntor separado de acordo com os regulamentos nacionais aplicáveis. Este requisito assegura que o dispositivo de proteção contra sobreintensidades, normalmente um disjuntor, corresponde ao menor calibre de cabo existente no circuito [1].



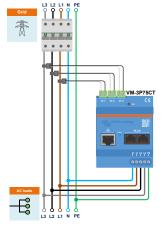

Proteção do circuito do VM-3P75CT

3.3. Exemplos de ligações elétricas por aplicação


Exemplos gerais de ligações elétricas CA



Ligações elétricas para VM-3P75CT monofásico em utilização como medidor da rede elétrica

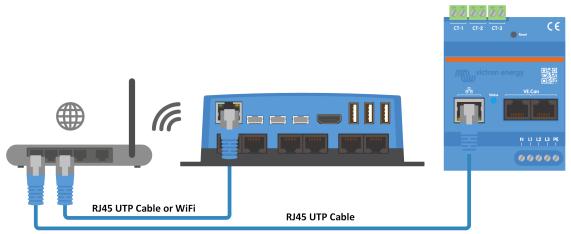


Ligações de fase dividida para VM-3P75CT monofásico em utilização como medidor da rede elétrica

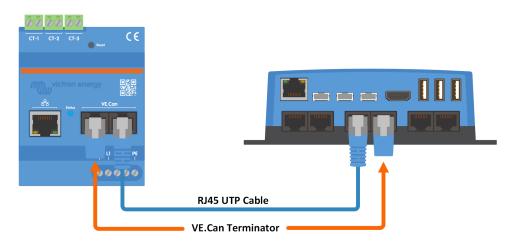
Exemplos específicos das ligações elétricas CA, segundo a aplicação e a função

Ligações elétricas para o VM-3P75CT trifásico - função definida para medir as cargas CA

Ligações elétricas para o VM-3P75CT trifásico - função definida para medir um inversor PV (ou gerador)


3.4. Ligações de Ethernet e VE.Can

O VM-3P75CT pode ser ligado ao dispositivo GX através da VE.Can ou de Ethernet.


Suponhamos que existe uma rede local com uma ligação Ethernet (através de um router) à qual o dispositivo GX está ligado através de Ethernet ou Wi-Fi. Neste caso, ligar o medidor de energia à mesma rede através de Ethernet é razoável.

Em alternativa, pode ligar o medidor de energia diretamente ao dispositivo GX através dos conectores VE.Can. Certifique-se de que a rede VE.Can está devidamente terminada em ambas as extremidades com os terminais VE.Can fornecidos.

Em ambas as aplicações, utilize um cabo Ethernet de qualidade, como o cabo UTP Victron RJ45 que também pode ser adquirido no seu distribuidor Victron em diferentes comprimentos.

O VM-3P75CT ligado ao dispositivo GX através de Ethernet

O VM-3P75CT ligado ao dispositivo GX através de VE.Can

4. Configuração e monitorização

O VM-3P75CT é configurado através da VictronConnect.

- Ao utilizar uma ligação VE.Can, o VM-3P75CT é detetado automaticamente depois de ser ligado à porta VE.Can e devidamente terminado. Certifique-se de que o perfil VE.Can da porta VE.Can do dispositivo GX está configurado para 250 khit/s
- Ao utilizar uma ligação Ethernet, o VM-3P75CT é reconhecido automaticamente pelo dispositivo GX.

Monitorização e configuração por VictronConnect

Existem duas formas de ligar o VM-3P75CT através da aplicação VictronConnect a partir de um dispositivo móvel, computador portátil ou de mesa:

- 1. Diretamente através da Ethernet com a ligação Modbus/UDP na rede local
- Ou, remotamente, com a função VictronConnect-Remote (VC-R), utilizando VE.Can ou Modbus/UDP (o dispositivo GX deve estar ligado ao portal VRM).

O VM-3P75CT é compatível com a Leitura Instantânea de dados essenciais (potência total e potência por fase) diretamente na lista de dispositivos (1) da VictronConnect. Isto funciona através de uma ligação de rede local e da função VictronConnect-Remote (VC-R).

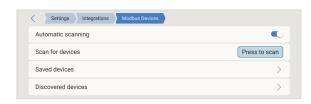
A apresentação dos dados da VictronConnect está dividida em:

- Uma página de Estado (2), que apresenta a frequência, a tensão linha-a-neutro, a tensão linha-a-linha, o fator de potência (de acordo com a norma IEEE), a sequência de fase na configuração trifásica, a advertência de rotação de fase na configuração trifásica e as tensões de terra protetoras, bem como as correntes de linha e neutras.
- Uma página de Energia (3), que mostra a energia injetada e comprada por fase.

Tocar na roda dentada no canto superior direito da página de Estado ou Energia permite aceder à página Definições. Aqui pode ajustar as definições de rede e a configuração do medidor.

O menu Definições (4) inclui as seguintes opções:

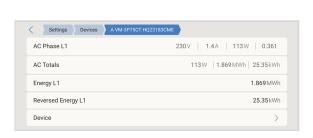
- Função: (8) para definir como medidor da rede elétrica, inversor PV, gerador, carga CA, carregador EV ou bomba de calor, dependendo dos aparelhos que pretende medir.
- Configuração de fase: (7) Na instalação monofásica, defina como Apenas L1. Na instalação trifásica, defina como trifásico.
 Na instalação de fase dividida, pode definir como fase dividida
- Método de registo da energia: (10) Por defeito: Vetor. Os métodos de registo da energia variam segundo o país. Consulte o seu fornecedor de energia para confirmar o método utilizado na sua região.
- Configuração de IP (5) Recomendamos deixar esta definição em Automático (DHCP). A configuração manual (6) apenas é necessária em casos muito raros. Contacte o seu administrador de rede para obter mais detalhes.
- Posição: (9) Se a função estiver definida como inversor PV, Carga CA, carregador EV ou bomba de calor, ajuste a posição conforme o local de ligação para a entrada Multi/Quattro CA ou a saída CA.
- Saída de impulso de LED: (10) O LED de estado pode ser configurado como um sinal de impulso de energia para proporcionar uma indicação visual rápida da carga. Cada impulso corresponde a uma quantidade de energia definida. As opcões são: desativado, 10 Wh (por defeito), 100 Wh e 1 kWh.
- Rotação de fase: (4) Ativa uma advertência de rotação de fase. Desativado por defeito.



A configuração fica concluída depois de definir corretamente a Função.

Monitorização do dispositivo GX

Depois de o VM-3P75CT estabelecer uma ligação ao dispositivo GX na rede local, deve ser ativado no menu Modbus TCP/UDP antes de aparecer na lista de Dispositivos.


Aceda a Definições → Integrações → Dispositivos Modbus → Dispositivos detetados e ative o medidor de energia detetado. Está desativado por defeito quando for instalado e ativado pela primeira vez.

Após a ativação, o medidor de energia será visualizado na lista de Dispositivos e na página de Visão Geral, podendo aceder aos seguintes parâmetros:

- Fase CA L1..L3: tensão, corrente, potência, fator de potência
- Totais CA: potência, energia exportada, energia importada
- · Energia L1..L3: energia exportada
- Energia importada L1..L3: energia importada
- Página do dispositivo: Visão geral da ligação e dos dados específicos do hardware, com a opção para atribuir um nome personalizado ao medidor

4.1. Códigos LED

O VM-3P75CT integra um LED que mostra o estado do medidor de energia.

Os estados de LED são os seguintes:

- Intermitência rápida alternadamente em verde/vermelho: Modo de arranque / atualização.
- Verde constante: Tudo OK, modo de funcionamento normal.
- Verde intermitente @ 1 Hz (ciclo de funcionamento de 50 %): Para identificar a unidade. Para após 60 s.
- Apagado durante 3 s, aceso durante mais 10 s e apagado novamente enquanto carrega no botão de reinicialização durante cerca de 15 s: Repor valores de fábrica.
- · apagado e imediatamente aceso depois de premir brevemente o botão de reinicialização: Reinicia o dispositivo.
- Vermelho constante: O LED acende-se em vermelho constante se houver um erro.
- Impulso vermelho curto: Cada impulso corresponde a uma quantidade específica de energia que passa pelo medidor. Esses impulsos representam incrementos como 0,01 kWh, 0,1 kWh ou 1 kWh.

5. Atualizações de firmware

O firmware do VM-3P75CT pode ser atualizado de várias formas:

- VRM: atualização remota do «firmware»: Funciona através da ligação de Ethernet e VE.Can
- VictronConnect-Remote (VC-R): Funciona através da ligação de Ethernet e VE.Can
- VictronConnect localmente através de ligação Ethernet/Wi-Fi na rede local

6. Reinício e reposição das predefinições de fábrica

O VM-3P75CT tem um botão RESET (reinicialização) integrado que permite redefinir o medidor de energia para as predefinições ou reiniciar o dispositivo se ocorrer um problema sem cortar a fonte de alimentação. Para além disso, também pode realizar uma reinicialização de fábrica através da VictronConnect.

Reiniciar

Para reiniciar o medidor de energia, prima brevemente o botão RESET. O LED apaga-se e acende-se imediatamente.

Repor as predefinições de fábrica

Uma reposição de fábrica configura as seguintes definições para:

· Configuração IP: Automático (DHCP)

· Função: Rede Elétrica

· Configuração de fase: 3 fases

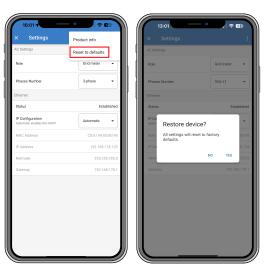
• Nome personalizado: VM-3P75CT mais o número de série

Reponha as predefinições passo a passo com o botão RESET:

1. Prima e mantenha premido o botão RESET.

A unidade reinicializa-se e apaga o LED durante cerca de 3 s. Depois o dispositivo reinicia e o LED acende-se novamente em verde.

2. Continue a premir o botão durante mais 10 s.


Após 10 s, o LED volta a apagar-se.

3. Solte o botão.

O dispositivo vai ser reiniciado.

Reponha as predefinições passo a passo com a aplicação VictronConnect:

- 1. Abra a aplicação VictronConnect e toque no medidor de energia que pretende reinicializar na lista de dispositivos.
- 2. Na página de Estado, toque no ícone da engrenagem.
- 3. Na página de Definições aberta, toque nos três pontos verticais no canto superior direito.
- 4. Toque em Repor as predefinições no menu emergente.
- 5. No menu emergente seguinte, confirme o processo ao tocar em SIM.

Após a reposição das predefinições de fábrica, o medidor de energia deve ser configurado novamente, conforme descrito na secção Configuração e monitorização.

7. Resolução de problemas

7.1. O LED alterna entre verde e vermelho intermitente (modo de gestor de arranque)

Pode haver duas razões para este comportamento:

- Está a ser realizada uma atualização do firmware. Quando a atualização do firmware estiver concluída, o medidor de energia regressa automaticamente ao modo de aplicação, indicado por um LED verde constante.
- Uma atualização de firmware não foi realizada corretamente ou não existe nenhuma aplicação para iniciar. O medidor de energia permanece no modo de gestor de arranque até que a aplicação tenha sido instalada através de uma atualização do firmware.

Para corrigir esta situação, execute a atualização do firmware novamente, conforme descrito na secção Atualizações de firmware [11].

Quando o medidor de energia estiver no modo de gestor de arranque, os únicos métodos disponíveis para realizar uma atualização do firmware incluem a VictronConnect localmente (por Ethernet ou Wi-Fi) ou remotamente através do VRM: Atualizações de firmware remotas (utilizando a conectividade VE.Can ou Ethernet).

Não é possível efetuar uma atualização do firmware através do VictronConnect Remote (VC-R) no modo de gestor de arranque.

7.2. Códigos de erro

O VM-3P75CT indica a existência de um erro com o acendimento do LED em vermelho constante. Em simultâneo, aparece um código de erro no dispositivo GX, no VRM e na VictronConnect.

Podem ser apresentados os seguintes códigos de erro:

· 116 - Perda de dados de calibragem

Se a unidade não funcionar e o erro 116 surge como erro ativo, a unidade está avariada. Contacte o seu distribuidor para uma substituição.

• 119- Definições corrompidas:

O medidor de energia não conseguiu ler a configuração e parou.

Para corrigir o erro, execute uma reposição de fábrica conforme descrito na secção Reinício e reposição das predefinições de fábrica [12].

· 122 - contadores kWh corrompidos

Para corrigir este erro, deve reinicializar o contador kWh.

7.3. FAQ

7.3.1. O valor atual parece anormalmente elevado para a potência indicada

O medidor de energia calcula a potência ativa da fase (P, em watts), que é mostrado no monitor. A potência ativa é determinada por:

· Sistema monofásico:

P = Tensão × Corrente × Fator de potência ($\cos \theta$)

· Sistema trifásico:

P = $\sqrt{3}$ × Tensão × Corrente × Fator de potência (cos θ)

Se o fator de potência for unitário (cos θ = 1), a potência real (ativa) é igual à potência aparente (S), que corresponde, simplesmente, à tensão RMS × corrente RMS.

Na maior parte dos sistemas reais, as cargas capacitivas e/ou indutivas introduzem potência reativa. Isto diminui o fator de potência, pelo que a potência aparente (S) supera a potência ativa (P).

Portanto, nos sistemas CA é normal e expectável que a potência aparente (S) seja mais alta que a potência ativa (P) sempre que o fator de potência for inferior a 1.

O VM-3P75CT também notifica o fator de potência diretamente. Se a corrente parecer invulgarmente elevada em comparação com a leitura de potência, verifique o fator de potência apresentado: um valor baixo confirma que a causa está nas cargas reativas.

Exemplos de um fator de potência insuficiente:

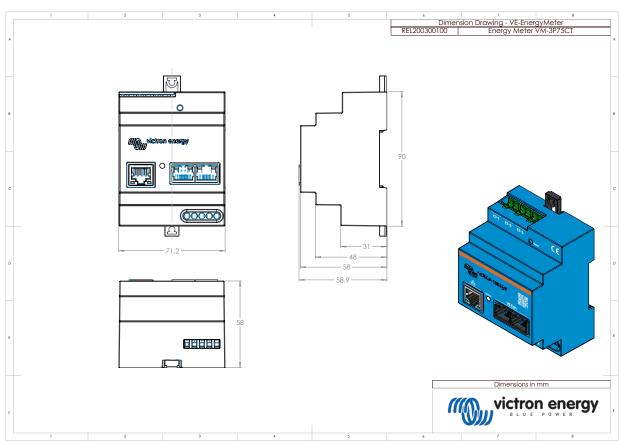
- Os pequenos dispositivos eletrónicos como os carregadores USB e a iluminação LED têm, frequentemente, um fator de potência particularmente baixo.
- Os dispositivos de produção renovável, por outro lado, estão obrigados legalmente a funcionar próximo de um fator de potência unitário. Isto pode exagerar a diferença entre P e S, dado que o fator de potência «bom» da produção é cancelado, ficando apenas o fator «mau» das cargas.

Soluções possíveis:

- · Utilize cargas com a correção do fator de potência incluída (comum nas fontes de alimentação de computador modernas).
- Ou, então, considere a instalação de um equipamento que corrija o fator de potência específico.

7.3.2. AAA atualização de firmware através da ligação de Ethernet falhou

Se tiver dificuldades ao atualizar o firmware do VM-3P75CT através de Ethernet, tente ligá-lo ao dispositivo GX através de VE.Can (consulte os detalhes na secção Ligações de Ethernet e VE.Can [7]), volte a fazer a atualização conforme indicado em Atualizações de firmware [11] e depois volte a fazer a ligação por Ethernet.



8. Informação técnica

8.1. Especificações técnicas

VM-3P75CT	REL200300100	
ENTRADAS DE TENSÃO		
Ligação de tensão	Direta	
Tensão nominal L-N	De 85 VCC a 265 VCC	
Tensão nominal L-L	De 150 VCC a 460 VCC	
Frequência	50/60 Hz	
ENTRADAS DE CORRENTE		
Ligação de corrente	Através de transformadores de corrente (incluídos; comprimento do cabo de 640 mm (25,2 in)	
Corrente nominal	75 A	
COMUNICAÇÃO		
Porta de comunicação VE.Can	Dois conectores RJ45 (terminais VE.Can incluídos)	
Porta de comunicação Ethernet	Um conector RJ45, Modbus UDP	
Taxa de atualização	100 ms	
FONTE DE ALIMENTAÇÃO		
Tipo	Autoalimentação através da L1-N.	
Interruptor ou disjuntor	Necessário como dispositivo de desligamento - não incluído	
Consumo	1,45 W / 3,1 VA	
Frequência	50/60 Hz	
INVÓLUCRO EXTERIOR		
Material e cor	Policarbonato, azul (RAL5012)	
Ligação de tensão	Terminais de parafuso de 1,0 mm a 2,5 mm ² (22 - 12 AWG)	
Ligação de transformador de corrente	Terminais roscados de encaixar (incluídos)	
Categoria de proteção	IP20	
Peso	370 g (incluindo embalagem)	
Dimensões	90 mm x 71 mm x 59 mm (3,5 in x 2,8 in x 2,3 in)	
AMBIENTE		
Utilização interior/exterior	Apenas interior	
Temperatura de funcionamento	De -10 °C a 55 °C	
Temperatura de armazenagem	De -20 °C a 70 °C	
Humidade relativa	< 90 % sem condensação	
Altitude	2000 m (6562 ft)	
Flutuações da tensão da rede de alimentação	±0,1 Vin	
Categoria de sobretensão	Cat. III	
Grau de contaminação	2	
NORMAS		
Segurança	EN-IEC 61010-1	

8.2. Dimensão do invólucro

