

Isolation Transformer

2000W | 3600W 115/230V

Rev 11 - 02/2023

Este manual também está disponível em formato HTML5.

Índice

1. Instruções de segurança	
2. Características	2
2.1. Segurança elétrica	2
2.2. Prevenção da corrosão galvânica	
2.3. Conversão das tensões	
2.4. Arranque suave	
2.5. Esquema de ligações internas	
2.6. Segurança quando a embarcação estiver fora da água	4
3. Instalação	5
3.1. O que está na caixa	5
3.2. Resumo das ligações	
3.3. Configuração da entrada CA	6
3.4. Configuração de saída CA	6
3.5. Ligar a entrada CA e a saída CA	7
3.6. Saída CA neutra para a ligação de terra	
3.7. Requisitos de secção transversal do cabo	8
3.8. Exemplo de cablagem	
3.9. Ligação do aterramento de entrada e saída quando a embarcação está fora da água	a 9
4. Funcionamento	11
4.1. Limitador da corrente de irrupção	11
4.2. Proteção de temperatura	
5. Especificações técnicas	12
6. Dimensões	13

1. Instruções de segurança

ADVERTÊNCIA: Leia e guarde as seguintes instruções de segurança antes de instalar, utilizar, armazenar ou transportar este equipamento.

Geral:

- Consulte a documentação sobre este equipamento para se familiarizar com as marcas e as instruções de segurança antes de o utilizar. Este produto foi concebido e ensaiado de acordo com as normas internacionais. Utilize o equipamento apenas para a finalidade de aplicação prevista e de acordo com as especificações indicadas na secção Especificações Técnicas.
- ADVERTÊNCIA: RISCO DE CHOQUE ELÉTRICO.
- · Não abra o invólucro se o produto ainda estiver conectado a uma fonte de energia elétrica.
- Não retire o painel frontal nem utilize o equipamento sem que todos os painéis estejam instalados.
 Encaminhe toda a assistência técnica para o pessoal qualificado.
- · Atenção: nunca transporte cargas pesadas sem ajuda.
- · Não exponha o produto a água, névoa, neve, pulverização ou poeira.
- Não utilize o produto em locais onde exista um risco de explosão de gás ou poeiras. Este produto não está protegido contra uma ignição.

Instalação:

- Consulte sempre a secção de instalação no manual antes de aplicar energia no equipamento.
- As ligações, os tamanhos dos cabos e as caraterísticas de segurança devem cumprir os regulamentos locais aplicáveis.
- Este é um produto de classe de segurança I (fornecido com um terminal de aterramento protetor). Deve instalar num aterramento de segurança ininterrupto nos terminais AC-IN e AC-OUT. Existe um ponto de ligação à terra adicional no exterior do equipamento. Sempre que houver uma possibilidade de danos na proteção de aterramento, o produto deve ser desligado e bloqueado para evitar qualquer utilização não intencional; consulte o pessoal de assistência qualificado.
- Certifique-se de que instala os disjuntores nos cabos de ligação. Nunca substitua um componente de segurança por outro de um tipo diferente. Consulte o manual para determinar o componente correto.
- Antes de aplicar energia, verifique se a fonte de energia disponível corresponde às configurações do produto descritas no manual.
- Certifique-se de que as condições ambientais são adequadas para utilizar o equipamento. Nunca utilize
 o produto em condições de chuva ou em ambientes poeirentos. Permita pelo menos 10 cm de espaço
 livre em torno do produto para a ventilação e certifique-se de que as ventoinhas de ventilação não estão
 bloqueadas. Faça a instalação num ambiente bem ventilado e resistente ao calor. Evite a presença de, por
 exemplo, produtos químicos, componentes sintéticos, cortinas ou outros têxteis nas imediações do produto.
- Certifique-se de que a potência necessária não ultrapassa a potência nominal do produto.

Transporte e armazenagem:

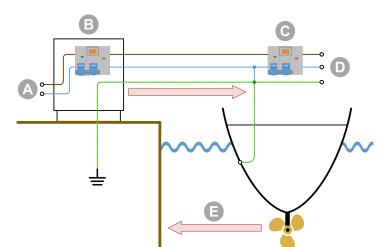
- Ao armazenar ou transportar o produto, certifique-se de que todos os cabos de alimentação estão desligados.
- Será declinada qualquer responsabilidade por danos de transporte se o equipamento for enviado numa embalagem não-original.
- Guarde o produto num local seco. A temperatura de armazenagem deve variar de -20 °C a 60 °C.

2. Características

O transformador de isolamento elimina qualquer continuidade elétrica entre a energia do cais CA e a embarcação. É essencial para a segurança e elimina a necessidade de isoladores galvânicos e de alarmes de polaridade.

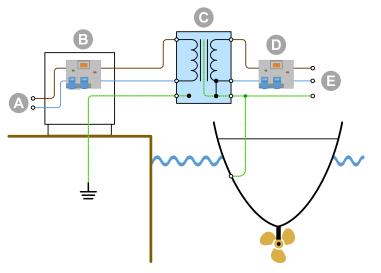
2.1. Segurança elétrica

A segurança elétrica é considerada como assegurada numa instalação de terra comum. Um disjuntor dispara ou um GFCI (disjuntor de falha de terra) dispara em caso de curto-circuito ou fuga de corrente para a terra. Ligar o cabo de terra da alimentação do lado do cais às peças metálicas de uma embarcação origina corrosão galvânica.


Instalar apenas o cabo sob tensão e neutro a bordo cria uma situação insegura, porque os GFCI não funcionam, nem o disjuntor dispara em caso de curto-circuito com uma peça metálica na embarcação.

2.2. Prevenção da corrosão galvânica

A corrosão galvânica ocorre quando dois metais dissimilares em contacto elétrico são expostos simultaneamente a um fluido condutor elétrico. A água do mar e, em menor medida, a água doce são fluidos assim. De uma forma geral, a liga mais ativa do par é corroída preferencialmente, enquanto o material menos ativo (mais nobre) está protegido de forma catódica. A velocidade da corrosão galvânica depende de diversas variáveis, incluindo as relações de área, da condutividade do fluido, a temperatura, a natureza dos materiais, etc.


É incorreto pensar que a corrosão galvânica ocorre somente nos cascos de metal e alumínio. Na verdade, pode ocorrer em qualquer embarcação quando uma peça metálica (o veio e a hélice) estiver em contacto com a água. A corrosão galvânica vai dissolver rapidamente os ânodos sacrificiais e atacar o veio, a hélice e outras peças metálicas em contacto com a água quando a embarcação estiver conectada à alimentação do lado do cais. Portanto, pode ser tentador não conectar o condutor de terra: no entanto, tal seria extremamente perigoso, porque o GFCI não iria funcionar, nem o disjuntor disparar em caso de curto-circuito com uma peça metálica na embarcação.

A melhor solução para evitar a corrosão galvânica e, ao mesmo tempo, evitar qualquer situação insegura é instalar um transformador de isolamento a conectar à alimentação do cais. O transformador de isolamento elimina qualquer continuidade elétrica entre a energia do cais e a embarcação. A energia do cais é alimentada ao lado primário do transformador, enquanto a embarcação está ligada ao secundário. O transformador de isolamento isola completamente a embarcação do aterramento do cais. Ao conectar todas as peças metálicas à saída neutra no lado secundário do transformador, um GFCI ou um disjuntor dispara em caso de curto-circuito.

ID	Descrição
Α	Alimentação CA do cais
В	Distribuição CA do cais
С	GFCI (disjuntor de falha de terra)
D	Alimentação CA da embarcação
E	Corrosão galvânica

O aterramento do cais ligado a metais imersos da embarcação causa corrosão galvânica.

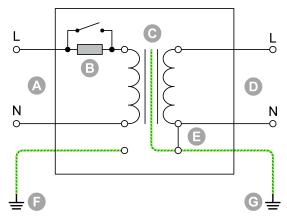
ID	Descrição
Α	Alimentação CA do cais
В	Distribuição CA do cais
С	Transformador de isolamento
D	GFCI (disjuntor de falha de terra)
Е	Alimentação CA da embarcação

O aterramento do cais é isolado do aterramento da embarcação e a corrosão galvânica proveniente da ligação do cais é bloqueada.

2.3. Conversão das tensões

O transformador de isolamento converte a tensão de entrada com uma relação de 1:1,05. A relação do transformador 1:1,05 aumenta a tensão de saída do transformador de isolamento em 5 %. Isto permite compensar as quedas de tensão da energia do cais que são uma ocorrência comum em marinas.

O transformador de isolamento pode ser utilizado em sistemas de 115 V ou 230 V e também para converter 230 V para 120 V e 115 V para 240 V. Dependendo da configuração do transformador de isolamento:


- Uma entrada de 230 V torna-se 240 V.
- Uma entrada de 230 V torna-se 120 V.
- Uma entrada de 115 V torna-se 240 V.
- Uma entrada de 115 V torna-se 120 V.

O transformador de isolamento pode ser utilizado em sistemas de 50 Hz ou 60 Hz. No entanto, o transformador de isolamento não pode converter frequências de 50 Hz em 60 Hz ou vice-versa.

2.4. Arranque suave

O arranque suave é uma caraterística comum de um transformador de isolamento de energia da Victron. Isto vai evitar que o disjuntor da energia do cais dispare devido à corrente de entrada do transformador.

2.5. Esquema de ligações internas

Esquema elétrico interno do transformador de isolamento.

ID	Descrição
Α	Ligação CA do cais
В	Arranque suave
С	Transformador
D	Ligação CA da embarcação
Е	Neutro - Ligação à terra (amovível)
F	Aterramento do cais
G	Aterramento da embarcação

2.6. Segurança quando a embarcação estiver fora da água

É recomendável, para uma segurança ideal, ligar o aterramento do cais ao aterramento da embarcação quando esta estiver fora da água, durante o inverno ou a manutenção. O transformador de isolamento tem uma função apropriada.

3. Instalação

3.1. O que está na caixa

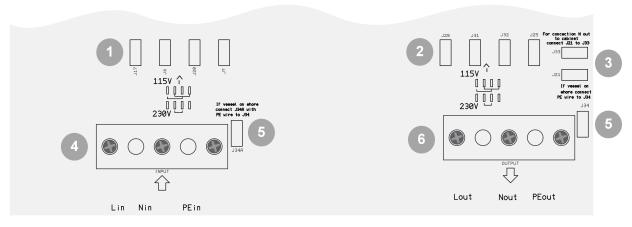
O transformador de isolamento é fornecido com os seguintes artigos:

Descrição

1x cabo amarelo/verde longo com terminais de olhal, utilizado no aterramento do invólucro (não incluído no modelo 2000 W).

1x cabo «jumper» amarelo/verde curto com conectores fêmea de 6,35 mm, utilizado para realizar a ligação de saída CA neutra (N) ao aterramento (PE).

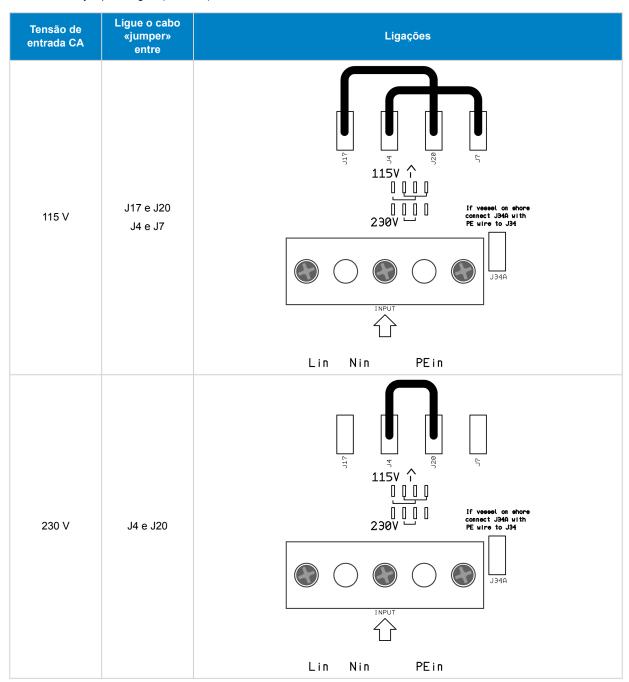
1x cabo «jumper» amarelo/verde longo com conectores fêmea de 6,35 mm, utilizado para ligar o aterramento de entrada CA (PE) ao aterramento de saída CA (PE) quando a embarcação estiver fora da água para a manutenção ou para a armazenagem no Inverno.


1x suporte de suspensão, utilizado para montar o transformador de isolamento no interior de uma embarcação.

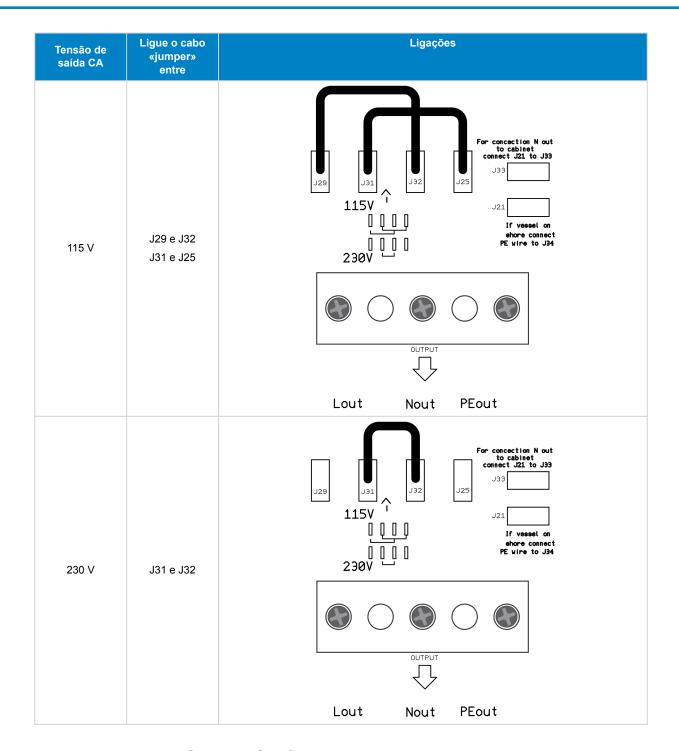
1x transformador de isolamento.

4x cabos «jumper» curtos negros com conectores fêmea de 6,35 mm, utilização para a configuração CA.

7x parafusos de montagem para o modelo 3600 W e 4 x parafusos de montagem para o modelo 2000 W.


3.2. Resumo das ligações

I D	Descrição
1	Terminais macho para configurar a tensão de entrada CA: Para 115 V, conecte J17 a J20 e conecte J4 a J7. Para 230 V, conecte J4 a J20.
2	Terminais macho para configurar a tensão de saída CA: Para 115 V, conecte J29 a J32 e conecte J31 a J25. Para 230 V, conecte J31 a J32.
3	Terminais macho para estabelecer uma ligação de conexão neutra ao aterramento da saída CA para um funcionamento correto de um GFCI da saída CA: J33 e J21.
4	Terminal de entrada CA (energia do cais): Fase (L) neutra (N) e terra (PE).
5	Terminais macho para ligar o aterramento de entrada CA ao aterramento de saída CA quando a embarcação está fora da água: J34A e J34.
6	Terminal de saída CA (cargas CA ou instalação CA): Fase (L) neutra (N) e terra (PE).

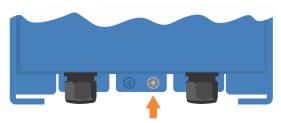

3.3. Configuração da entrada CA

A entrada CA precisa de ser configurada para uma utilização de 115 V ou 230 V. Isto pode feito conectando os terminais macho com os cabos «jumper» negros (incluídos). Estes terminais estão localizados sobre o conector de entrada CA.

3.4. Configuração de saída CA

A saída CA precisa de ser configurada para uma utilização de 115 V ou 230 V. Isto pode feito conectando os terminais macho com os cabos «jumper» negros (incluídos). Estes terminais estão localizados sobre o conector de saída CA.

3.5. Ligar a entrada CA e a saída CA

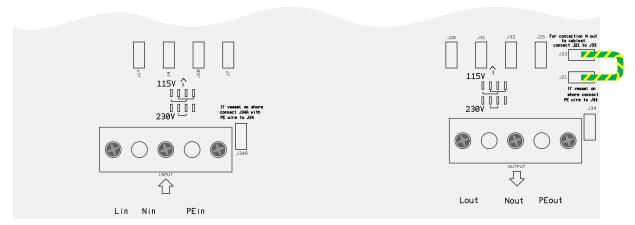


Perigo de eletrocussão. Não trabalhe no transformador de isolamento ou no sistema elétrico se ainda estiverem ligados a uma fonte de alimentação elétrica.

Sequência de ligação:

- 1. Passe os cabos CA através dos bucins na parte inferior do armário da seguinte forma:
 - a. Passe o cabo de entrada CA (energia do cais) através do bucim do lado esquerdo.
 - b. Passe o cabo de saída CA (cargas CA) através do bucim do lado direito.
- 2. Ligue o cabo de entrada CA ao bloco de terminais de INPUT da seguinte forma:
 - a. Ligue o cabo de terra ao terminal PE.
 - b. Ligue o cabo neutro ao terminal N.

- c. Ligue o cabo de fase ao terminal L.
- 3. Ligue o cabo de saída CA ao bloco de terminais de OUTPUT da seguinte forma:
 - a. Ligue o cabo de terra ao terminal PE.
 - b. Ligue o cabo neutro ao terminal N.
 - c. Ligue o cabo de fase ao terminal L.
- 4. Conecte o armário ao aterramento (todas as peças metálicas na embarcação) da seguinte maneira:
 - Ligue o perno M6 sob o invólucro do aterramento da embarcação. Consulte o desenho abaixo para localizar o parafuso de aterramento do chassis.

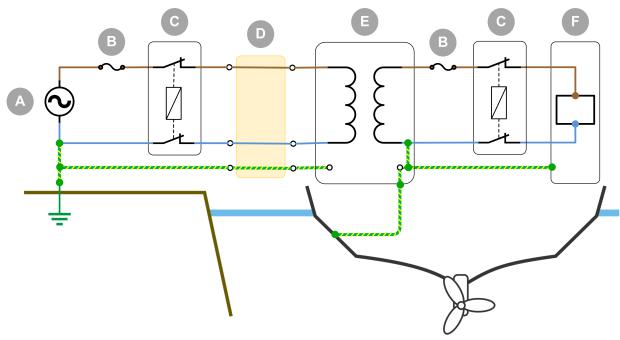


Localização do parafuso de terra do chassis.

3.6. Saída CA neutra para a ligação de terra

Deve instalar um GFCI na saída CA do transformador de isolamento. Para que o GFCI funcione corretamente, o neutro da saída CA deve ser conectado à terra da saída CA e à massa (todas as peças metálicas na embarcação).

Para ligar a saída CA neutra (N) à terra (PE), coloque um cabo «jumper» verde/amarelo (incluído) entre os conectores macho J33 e J21.

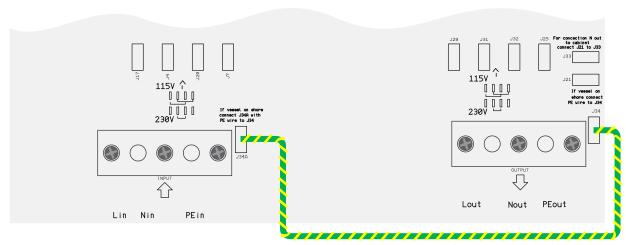

Saída CA neutra (N) para a ligação de terra (PE).

3.7. Requisitos de secção transversal do cabo

Utilize as seguintes secções transversais mínimas dos cabos:

Potência nominal do transformador de isolamento	Tensão	Métrica	AWG
2000 W	115 V	2,5 mm²	AWG 13
2000 W	230 V	1,5 mm²	AWG 16
3600 W	115 V	6 mm²	AWG 10
3600 W	230 V	2,5 mm²	AWG 13

3.8. Exemplo de cablagem


Exemplo de cablagem do transformador de isolamento instalado numa embarcação conectada à energia do cais.

I D	Descrição
Α	Energia do cais.
В	Disjuntor.
С	GFCI (disjuntor de falha de terra).
D	Cabo do cais.
Е	Transformador de isolamento.
F	Cargas CA.

3.9. Ligação do aterramento de entrada e saída quando a embarcação está fora da água.

Por razões de segurança, quando a embarcação estiver fora da água (em terra) durante o inverno ou a manutenção, o condutor de terra (PE) deve ser conectado diretamente ao condutor de terra (PE) da energia do cais.

Isto pode ser realizado no interior do transformador de isolamento conectando o cabo «jumper» amarelo/verde (incluído) entre os terminais macho J34A e J34, conforme indicado abaixo.

O aterramento de entrada CA está ligado ao aterramento de saída CA quando a embarcação estiver fora da água (em terra) durante o inverno ou para a manutenção.

4. Funcionamento

Verifique a configuração da tensão de entrada e saída antes de utilizar o transformador de isolamento.

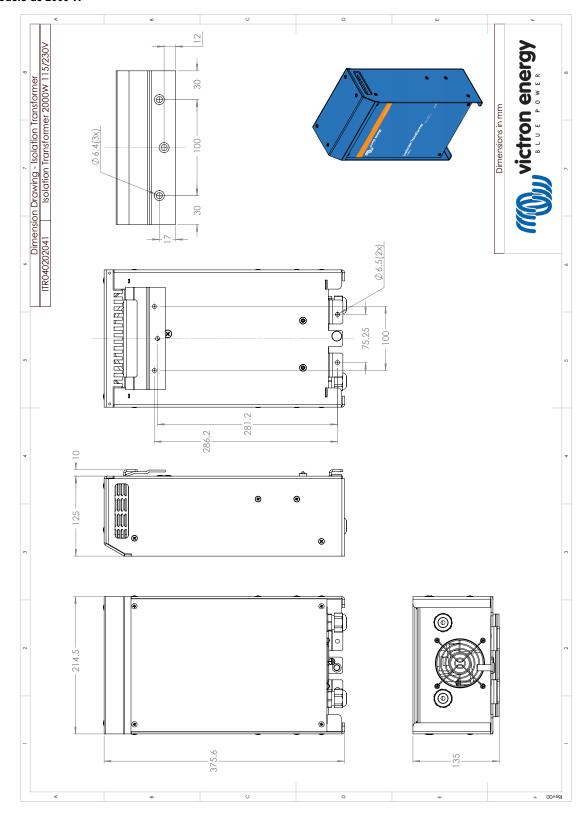
4.1. Limitador da corrente de irrupção

O limitador da corrente de irrupção impede que os disjuntores a montante disparem quando ligar o transformador de isolamento.

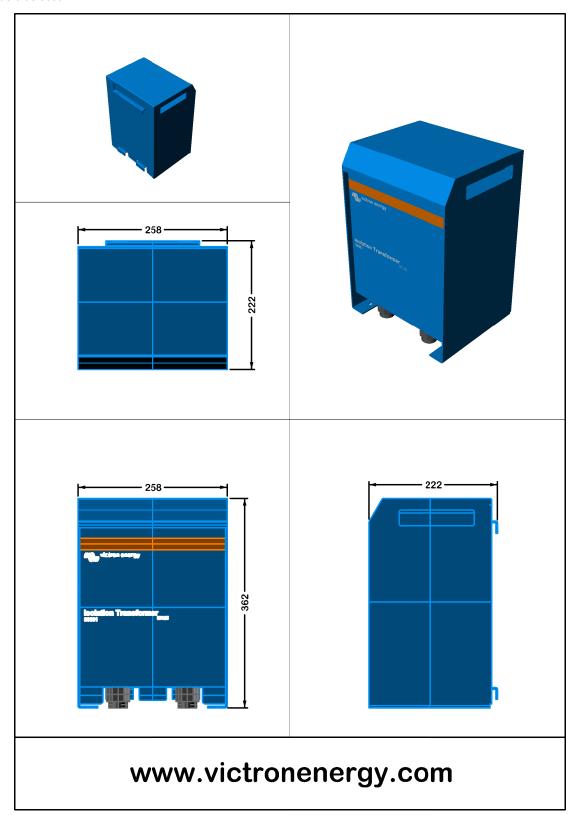
4.2. Proteção de temperatura

O transformador de isolamento é arrefecido por ventoinha. A velocidade da ventoinha é controlada pela temperatura. A velocidade (rpm) aumenta se a temperatura também aumentar.

O transformador de isolamento está protegido contra a temperatura excessiva e desliga-se em caso de sobreaquecimento.


5. Especificações técnicas

Transformador de isolamento	2000 W	3600 W	
Tensão de entrada CA *	115 ou 230V	115 ou 230V	
Tensão de saída CA *	120 ou 240 V	120 ou 240 V	
Frequência	50/60 Hz	50/60 Hz	
Corrente de saída nominal	19 A (115 V)	32 A (115 V)	
	8,5 A (230 V)	16 A (230 V)	
Arranque suave	Sim		
Temperatura de funcionamento	-20 °C	-20 °C a 40 °C	
Humidade	Máx. 95 %, ser	Máx. 95 %, sem condensação	
Tipo de transformador	Toroidal (baixo ruído, ba	Toroidal (baixo ruído, baixo peso), relação 1:1,05	
Caixa	Alumínio (azul RAL 5012)		
Classe de proteção	IP21		
Segurança	EN 60076		
Peso	12,7 kg	23 kg	
Dimensões (a x l x p), mm	375 x 214 x 135	362 x 258 x 218	


- *) O transformador de isolamento pode ser usado como:
- Transformador de isolamento de 115 V a 120 V
- Transformador de isolamento de 230 V a 240 V
- Transformador de isolamento de 115 V a 240 V
- Transformador de isolamento de 230 V a 120 V

6. Dimensões

Modelo de 2000 W

Modelo de 3600 W

